Modular Arithmetic
Greatest Common Divisor
Question
There are many tools to calculate the GCD of two integers, but for this task we recommend looking up Euclid's Algorithm.
Try coding it up; it's only a couple of lines. Use a = 12, b = 8
to test it.
Now calculate gcd(a,b)
for a = 66528, b = 52920
and enter it below.
Using Repititive Subtraction
def gcd(a, b):
if a == b:
return a
if a > b:
return gcd(a - b, b)
if a < b:
return gcd(a, b - a)
print(gcd(84, 132))
Using Modulo
def gcd(a, b):
return b if a % b == 0 else gcd(b, a % b)
print(gcd(66528, 52920))
Using math.gcd()
from math import gcd
print(gcd(66528, 52920))
Extended GCD
Using the two primes p = 26513, q = 32321
, find the integers u,v
such that
p * u + q * v = gcd(p,q)
Enter whichever of u
and v
is the lower number as the flag.
Knowing that p,q
are prime, what would you expect gcd(p,q)
to be? For more details on the extended Euclidean algorithm, check out this page.
def extended_gcd(x, y):
# Initializing Values
a, b = x, y
if y > x:
a, b = y, x
current_m, previous_m = 0, 1
current_n, previous_n = 1, 0
while b != 0:
q = a // b
r = a % b
m = current_m - previous_m * q
n = current_n - previous_n * q
a, b = b, r
current_m, previous_m = previous_m, m
current_n, previous_n = previous_n, n
gcd = a
return gcd, current_m, current_n
Modular Arithmetic 1
Calculate the following integers:
11 ≡ x mod 6
8146798528947 ≡ y mod 17
The solution is the smaller of the two integers.
a = 11 % 6
b = 8146798528947 % 17
print(a if a < b else b)
Modular Arithmetic 2
Now take the prime p = 65537
. Calculate 273246787654 ^ 65536 mod 65537
.
Did you need a calculator?
Answer: 1
Modular Inverting
Question
What is the inverse element: 3 * d ≡ 1 mod 13
?
Using Fermat's Little Theorem
a = 3
p = 13
# You can use any method ** or pow to find the power.
# Both is going to give the same result.
# But using pow is more efficient
print(a**(p - 2) % p)
# or
print(pow(a, p-2, p))
Using Extended Euclidean Algorithm
def multiplicative_inverse(x, y):
# Using Extended Euclidean Algorithm / Extended GCD
a, b = x, y
if y > x:
a, b = y, x
t1, t2 = 0, 1
while b != 0:
q = a // b
r = a % b
t = t1 - t2 * q
a, b = b, r
t1, t2 = t2, t
if y > x:
return y + t1 # To get a Positive Value
else:
return x + t1 # To get a Positive Value
print(multiplicative_inverse(7, 11))
Using Crypto.Util.number.inverse()
# pip install pycryptodome
from Crypto.Util.number import inverse
print(inverse(3, 13))
Quadratic Residues
Find the quadratic residue and then calculate its square root. Of the two possible roots, submit the smaller one as the flag.
p = 29
ints = [14, 6, 11]
from math import gcd
p = 29
ints = [14, 6, 11]
print(min([i for i in range(1, p) if gcd(i, p) == 1 and pow(i, 2, p) in ints]))
Properties of Quadratic (Non-) Residues
Quadratic Residue * Quadratic Residue = Quadratic Residue
Quadratic Residue * Quadratic Non-residue = Quadratic Non-residue
Quadratic Non-residue * Quadratic Non-residue = Quadratic Residue
Legendre Symbol
Definition
where,
(a / p) = 1 if a is a quadratic residue and a ≢ 0 mod p
(a / p) = -1 if a is a quadratic non-residue mod p
(a / p) = 0 if a ≡ 0 mod p
Which means given any integer a
, calculating pow(a, (p-1) // 2,p)
is enough to determine if a
is a quadratic residue.
Question
Given the following 1024 bit prime and 10 integers, find the quadratic residue and then calculate its square root; the square root is your flag. Of the two possible roots, submit the larger one as your answer.
Formula for Finding Square Root
p = 101524035174539890485408575671085261788758965189060164484385690801466167356667036677932998889725476582421738788500738738503134356158197247473850273565349249573867251280253564698939768700489401960767007716413932851838937641880157263936985954881657889497583485535527613578457628399173971810541670838543309159139
ints = [
25081841204695904475894082974192007718642931811040324543182130088804239047149283334700530600468528298920930150221871666297194395061462592781551275161695411167049544771049769000895119729307495913024360169904315078028798025169985966732789207320203861858234048872508633514498384390497048416012928086480326832803,
45471765180330439060504647480621449634904192839383897212809808339619841633826534856109999027962620381874878086991125854247108359699799913776917227058286090426484548349388138935504299609200377899052716663351188664096302672712078508601311725863678223874157861163196340391008634419348573975841578359355931590555,
17364140182001694956465593533200623738590196990236340894554145562517924989208719245429557645254953527658049246737589538280332010533027062477684237933221198639948938784244510469138826808187365678322547992099715229218615475923754896960363138890331502811292427146595752813297603265829581292183917027983351121325,
14388109104985808487337749876058284426747816961971581447380608277949200244660381570568531129775053684256071819837294436069133592772543582735985855506250660938574234958754211349215293281645205354069970790155237033436065434572020652955666855773232074749487007626050323967496732359278657193580493324467258802863,
4379499308310772821004090447650785095356643590411706358119239166662089428685562719233435615196994728767593223519226235062647670077854687031681041462632566890129595506430188602238753450337691441293042716909901692570971955078924699306873191983953501093343423248482960643055943413031768521782634679536276233318,
85256449776780591202928235662805033201684571648990042997557084658000067050672130152734911919581661523957075992761662315262685030115255938352540032297113615687815976039390537716707854569980516690246592112936796917504034711418465442893323439490171095447109457355598873230115172636184525449905022174536414781771,
50576597458517451578431293746926099486388286246142012476814190030935689430726042810458344828563913001012415702876199708216875020997112089693759638454900092580746638631062117961876611545851157613835724635005253792316142379239047654392970415343694657580353333217547079551304961116837545648785312490665576832987,
96868738830341112368094632337476840272563704408573054404213766500407517251810212494515862176356916912627172280446141202661640191237336568731069327906100896178776245311689857997012187599140875912026589672629935267844696976980890380730867520071059572350667913710344648377601017758188404474812654737363275994871,
4881261656846638800623549662943393234361061827128610120046315649707078244180313661063004390750821317096754282796876479695558644108492317407662131441224257537276274962372021273583478509416358764706098471849536036184924640593888902859441388472856822541452041181244337124767666161645827145408781917658423571721,
18237936726367556664171427575475596460727369368246286138804284742124256700367133250078608537129877968287885457417957868580553371999414227484737603688992620953200143688061024092623556471053006464123205133894607923801371986027458274343737860395496260538663183193877539815179246700525865152165600985105257601565
]
for a in ints:
legendre_symbol = pow(a, (p - 1) // 2, p)
if legendre_symbol == 1: # Checking if Valid Residue
print(pow(a, (p + 1) // 4, p)) # Finding the Positive Square Root
Modular Square Root
Find the square root of a
modulo the 2048-bit prime p
. Give the smaller of the two roots as your answer.
Using Sympy
from sympy.ntheory import nthroot_mod
a = 8479994658316772151941616510097127087554541274812435112009425778595495359700244470400642403747058566807127814165396640215844192327900454116257979487432016769329970767046735091249898678088061634796559556704959846424131820416048436501387617211770124292793308079214153179977624440438616958575058361193975686620046439877308339989295604537867493683872778843921771307305602776398786978353866231661453376056771972069776398999013769588936194859344941268223184197231368887060609212875507518936172060702209557124430477137421847130682601666968691651447236917018634902407704797328509461854842432015009878011354022108661461024768
p = 30531851861994333252675935111487950694414332763909083514133769861350960895076504687261369815735742549428789138300843082086550059082835141454526618160634109969195486322015775943030060449557090064811940139431735209185996454739163555910726493597222646855506445602953689527405362207926990442391705014604777038685880527537489845359101552442292804398472642356609304810680731556542002301547846635101455995732584071355903010856718680732337369128498655255277003643669031694516851390505923416710601212618443109844041514942401969629158975457079026906304328749039997262960301209158175920051890620947063936347307238412281568760161
print(min(nthroot_mod(a, 2, p, True)))
Tonelli-Shanks Algorithm Implementation
a = 8479994658316772151941616510097127087554541274812435112009425778595495359700244470400642403747058566807127814165396640215844192327900454116257979487432016769329970767046735091249898678088061634796559556704959846424131820416048436501387617211770124292793308079214153179977624440438616958575058361193975686620046439877308339989295604537867493683872778843921771307305602776398786978353866231661453376056771972069776398999013769588936194859344941268223184197231368887060609212875507518936172060702209557124430477137421847130682601666968691651447236917018634902407704797328509461854842432015009878011354022108661461024768
p = 30531851861994333252675935111487950694414332763909083514133769861350960895076504687261369815735742549428789138300843082086550059082835141454526618160634109969195486322015775943030060449557090064811940139431735209185996454739163555910726493597222646855506445602953689527405362207926990442391705014604777038685880527537489845359101552442292804398472642356609304810680731556542002301547846635101455995732584071355903010856718680732337369128498655255277003643669031694516851390505923416710601212618443109844041514942401969629158975457079026906304328749039997262960301209158175920051890620947063936347307238412281568760161
# Implementation of the Tonelli-Shanks algoritm as described at:
# https://en.wikipedia.org/wiki/Tonelli%E2%80%93Shanks_algorithm
# Determines if n is a quadratic residue of an
# odd prime p by using Euler's criterion.
def is_quadratic_residue(n, p):
if n % p == 0:
return True
return pow(n, (p - 1) // 2, p) == 1
# Given an odd prime p and an integer n
# This is an algorithm to find a mod-p square root of n when possible
# Can delete all the print statements once its working.
def tonelli_shanks(p, n):
# Case when p|n, so n=0(mod p). The square root of 0 is 0.
if n % p == 0:
return 0
# So we can assume n is coprime to p, i.e. p does not divide n.
# Use Euler's criteria to see if a solution exists or not
if not is_quadratic_residue(n, p):
print("This value of n is not a quadratic residue.")
return None
else:
print("This value of n is a quadratic residue.")
# If p=3(mod 4) and we know n is a quadratic residue then
# we can solve x^2=n(mod p) directly
if p % 4 == 3:
return pow(n, (p + 1) // 4, p)
# So now p=1(mod 4), (although this is not needed in the algorithm).
# Write p - 1 = (2^S)(Q) where Q is odd
Q = p - 1
S = 0
while Q % 2 == 0:
S += 1
Q //= 2
# Find a quadratic non-residue of p by brute force search
z = 2
while is_quadratic_residue(z, p):
z += 1
# Initialize variables
M = S
c = pow(z, Q, p)
t = pow(n, Q, p)
R = pow(n, (Q + 1) // 2, p)
while t != 1:
# Calculate i
i = 0
temp = t
while temp != 1:
i += 1
temp = (temp * temp) % p
# Calculate b, M, c, t, R
pow2 = 2 ** (M - i - 1)
b = pow(c, pow2, p)
M = i
c = (b * b) % p
t = (t * b * b) % p
R = (R * b) % p
# We have found a square root
return R
print(tonelli_shanks(p, a))
Using Sage
from sage.rings.finite_rings.integer_mod import square_root_mod_prime
a = 8479994658316772151941616510097127087554541274812435112009425778595495359700244470400642403747058566807127814165396640215844192327900454116257979487432016769329970767046735091249898678088061634796559556704959846424131820416048436501387617211770124292793308079214153179977624440438616958575058361193975686620046439877308339989295604537867493683872778843921771307305602776398786978353866231661453376056771972069776398999013769588936194859344941268223184197231368887060609212875507518936172060702209557124430477137421847130682601666968691651447236917018634902407704797328509461854842432015009878011354022108661461024768
p = 30531851861994333252675935111487950694414332763909083514133769861350960895076504687261369815735742549428789138300843082086550059082835141454526618160634109969195486322015775943030060449557090064811940139431735209185996454739163555910726493597222646855506445602953689527405362207926990442391705014604777038685880527537489845359101552442292804398472642356609304810680731556542002301547846635101455995732584071355903010856718680732337369128498655255277003643669031694516851390505923416710601212618443109844041514942401969629158975457079026906304328749039997262960301209158175920051890620947063936347307238412281568760161
print(square_root_mod_prime(Mod(a, p), p))
Chinese Remainder Theorem
In cryptography, we commonly use the Chinese Remainder Theorem to help us reduce a problem of very large integers into a set of several, easier problems.
Formula
where,
Question
Given the following set of linear congruences:
x ≡ 2 mod 5
x ≡ 3 mod 11
x ≡ 5 mod 17
Find the integer a
such that x ≡ a mod 935
from math import prod
def chinese_remainder_theorem(a_s: list, n_s: list):
if len(a_s) != len(n_s):
raise ValueError("There should be equal number of a's and n's")
a = 0
n = prod(n_s)
for i, j in zip(a_s, n_s):
n_i = n // j
a += i * n_i * pow(n_i, j - 2, j) # Modular Inverse Using Fermat's Little Theorem
return a % n
print(chinese_remainder_theorem([2, 3, 5], [5, 11, 17]))
Adrien's Signs
Adrien's been looking at ways to encrypt his messages with the help of symbols and minus signs. Can you find a way to recover the flag?
source.py - Given
from random import randint
a = 288260533169915
p = 1007621497415251
FLAG = b'crypto{????????????????????}'
def encrypt_flag(flag):
ciphertext = []
plaintext = ''.join([bin(i)[2:].zfill(8) for i in flag])
for b in plaintext:
e = randint(1, p)
n = pow(a, e, p)
if b == '1':
ciphertext.append(n)
else:
n = -n % p
ciphertext.append(n)
return ciphertext
print(encrypt_flag(FLAG))
output.txt - Given
[67594220461269, 501237540280788, 718316769824518, 296304224247167, 48290626940198, 30829701196032, 521453693392074, 840985324383794, 770420008897119, 745131486581197, 729163531979577, 334563813238599, 289746215495432, 538664937794468, 894085795317163, 983410189487558, 863330928724430, 996272871140947, 352175210511707, 306237700811584, 631393408838583, 589243747914057, 538776819034934, 365364592128161, 454970171810424, 986711310037393, 657756453404881, 388329936724352, 90991447679370, 714742162831112, 62293519842555, 653941126489711, 448552658212336, 970169071154259, 339472870407614, 406225588145372, 205721593331090, 926225022409823, 904451547059845, 789074084078342, 886420071481685, 796827329208633, 433047156347276, 21271315846750, 719248860593631, 534059295222748, 879864647580512, 918055794962142, 635545050939893, 319549343320339, 93008646178282, 926080110625306, 385476640825005, 483740420173050, 866208659796189, 883359067574584, 913405110264883, 898864873510337, 208598541987988, 23412800024088, 911541450703474, 57446699305445, 513296484586451, 180356843554043, 756391301483653, 823695939808936, 452898981558365, 383286682802447, 381394258915860, 385482809649632, 357950424436020, 212891024562585, 906036654538589, 706766032862393, 500658491083279, 134746243085697, 240386541491998, 850341345692155, 826490944132718, 329513332018620, 41046816597282, 396581286424992, 488863267297267, 92023040998362, 529684488438507, 925328511390026, 524897846090435, 413156582909097, 840524616502482, 325719016994120, 402494835113608, 145033960690364, 43932113323388, 683561775499473, 434510534220939, 92584300328516, 763767269974656, 289837041593468, 11468527450938, 628247946152943, 8844724571683, 813851806959975, 72001988637120, 875394575395153, 70667866716476, 75304931994100, 226809172374264, 767059176444181, 45462007920789, 472607315695803, 325973946551448, 64200767729194, 534886246409921, 950408390792175, 492288777130394, 226746605380806, 944479111810431, 776057001143579, 658971626589122, 231918349590349, 699710172246548, 122457405264610, 643115611310737, 999072890586878, 203230862786955, 348112034218733, 240143417330886, 927148962961842, 661569511006072, 190334725550806, 763365444730995, 516228913786395, 846501182194443, 741210200995504, 511935604454925, 687689993302203, 631038090127480, 961606522916414, 138550017953034, 932105540686829, 215285284639233, 772628158955819, 496858298527292, 730971468815108, 896733219370353, 967083685727881, 607660822695530, 650953466617730, 133773994258132, 623283311953090, 436380836970128, 237114930094468, 115451711811481, 674593269112948, 140400921371770, 659335660634071, 536749311958781, 854645598266824, 303305169095255, 91430489108219, 573739385205188, 400604977158702, 728593782212529, 807432219147040, 893541884126828, 183964371201281, 422680633277230, 218817645778789, 313025293025224, 657253930848472, 747562211812373, 83456701182914, 470417289614736, 641146659305859, 468130225316006, 46960547227850, 875638267674897, 662661765336441, 186533085001285, 743250648436106, 451414956181714, 527954145201673, 922589993405001, 242119479617901, 865476357142231, 988987578447349, 430198555146088, 477890180119931, 844464003254807, 503374203275928, 775374254241792, 346653210679737, 789242808338116, 48503976498612, 604300186163323, 475930096252359, 860836853339514, 994513691290102, 591343659366796, 944852018048514, 82396968629164, 152776642436549, 916070996204621, 305574094667054, 981194179562189, 126174175810273, 55636640522694, 44670495393401, 74724541586529, 988608465654705, 870533906709633, 374564052429787, 486493568142979, 469485372072295, 221153171135022, 289713227465073, 952450431038075, 107298466441025, 938262809228861, 253919870663003, 835790485199226, 655456538877798, 595464842927075, 191621819564547]
Solution
While the provided source.py
script exponentiates the n
value with random numbers, it's important to note that since a
is a quadratic residue, its powers will also be quadratic residues. However, the script negates the sign of n
when b
is not equal to 1 (i.e., when b
is 0). This implies that we can decode the 8-bit binary code by determining whether n
is a quadratic residue. If it is, the function returns 1; otherwise, it returns 0. By doing this we can generate the binary string and then decode it to flag.
a = 288260533169915
p = 1007621497415251
cipher_text = [67594220461269, 501237540280788, 718316769824518, 296304224247167, 48290626940198, 30829701196032, 521453693392074, 840985324383794, 770420008897119, 745131486581197, 729163531979577, 334563813238599, 289746215495432, 538664937794468, 894085795317163, 983410189487558, 863330928724430, 996272871140947, 352175210511707, 306237700811584, 631393408838583, 589243747914057, 538776819034934, 365364592128161, 454970171810424, 986711310037393, 657756453404881, 388329936724352, 90991447679370, 714742162831112, 62293519842555, 653941126489711, 448552658212336, 970169071154259, 339472870407614, 406225588145372, 205721593331090, 926225022409823, 904451547059845, 789074084078342, 886420071481685, 796827329208633, 433047156347276, 21271315846750, 719248860593631, 534059295222748, 879864647580512, 918055794962142, 635545050939893, 319549343320339, 93008646178282, 926080110625306, 385476640825005, 483740420173050, 866208659796189, 883359067574584, 913405110264883, 898864873510337, 208598541987988, 23412800024088, 911541450703474, 57446699305445, 513296484586451, 180356843554043, 756391301483653, 823695939808936, 452898981558365, 383286682802447, 381394258915860, 385482809649632, 357950424436020, 212891024562585, 906036654538589, 706766032862393, 500658491083279, 134746243085697, 240386541491998, 850341345692155, 826490944132718, 329513332018620, 41046816597282, 396581286424992, 488863267297267, 92023040998362, 529684488438507, 925328511390026, 524897846090435, 413156582909097, 840524616502482, 325719016994120, 402494835113608, 145033960690364, 43932113323388, 683561775499473, 434510534220939, 92584300328516, 763767269974656, 289837041593468, 11468527450938, 628247946152943, 8844724571683, 813851806959975, 72001988637120, 875394575395153, 70667866716476, 75304931994100, 226809172374264, 767059176444181, 45462007920789, 472607315695803, 325973946551448, 64200767729194, 534886246409921, 950408390792175, 492288777130394, 226746605380806, 944479111810431, 776057001143579, 658971626589122, 231918349590349, 699710172246548, 122457405264610, 643115611310737, 999072890586878, 203230862786955, 348112034218733, 240143417330886, 927148962961842, 661569511006072, 190334725550806, 763365444730995, 516228913786395, 846501182194443, 741210200995504, 511935604454925, 687689993302203, 631038090127480, 961606522916414, 138550017953034, 932105540686829, 215285284639233, 772628158955819, 496858298527292, 730971468815108, 896733219370353, 967083685727881, 607660822695530, 650953466617730, 133773994258132, 623283311953090, 436380836970128, 237114930094468, 115451711811481, 674593269112948, 140400921371770, 659335660634071, 536749311958781, 854645598266824, 303305169095255, 91430489108219, 573739385205188, 400604977158702, 728593782212529, 807432219147040, 893541884126828, 183964371201281, 422680633277230, 218817645778789, 313025293025224, 657253930848472, 747562211812373, 83456701182914, 470417289614736, 641146659305859, 468130225316006, 46960547227850, 875638267674897, 662661765336441, 186533085001285, 743250648436106, 451414956181714, 527954145201673, 922589993405001, 242119479617901, 865476357142231, 988987578447349, 430198555146088, 477890180119931, 844464003254807, 503374203275928, 775374254241792, 346653210679737, 789242808338116, 48503976498612, 604300186163323, 475930096252359, 860836853339514, 994513691290102, 591343659366796, 944852018048514, 82396968629164, 152776642436549, 916070996204621, 305574094667054, 981194179562189, 126174175810273, 55636640522694, 44670495393401, 74724541586529, 988608465654705, 870533906709633, 374564052429787, 486493568142979, 469485372072295, 221153171135022, 289713227465073, 952450431038075, 107298466441025, 938262809228861, 253919870663003, 835790485199226, 655456538877798, 595464842927075, 191621819564547]
decoded_flag = ['1' if pow(each, (p - 1) // 2, p) == 1 else '0' for each in cipher_text]
print(''.join([chr(int(''.join(decoded_flag[i:i + 8]), 2)) for i in range(0, len(decoded_flag), 8)]))
Modular Binomials
Rearrange the following equations to get the primes p,q
N = pq
c1 = (2p + 3q)**e1 mod N
c2 = (5p + 7*q)**e2 mod N
N = 14905562257842714057932724129575002825405393502650869767115942606408600343380327866258982402447992564988466588305174271674657844352454543958847568190372446723549627752274442789184236490768272313187410077124234699854724907039770193680822495470532218905083459730998003622926152590597710213127952141056029516116785229504645179830037937222022291571738973603920664929150436463632305664687903244972880062028301085749434688159905768052041207513149370212313943117665914802379158613359049957688563885391972151218676545972118494969247440489763431359679770422939441710783575668679693678435669541781490217731619224470152467768073
e1 = 12886657667389660800780796462970504910193928992888518978200029826975978624718627799215564700096007849924866627154987365059524315097631111242449314835868137
e2 = 12110586673991788415780355139635579057920926864887110308343229256046868242179445444897790171351302575188607117081580121488253540215781625598048021161675697
c1 = 14010729418703228234352465883041270611113735889838753433295478495763409056136734155612156934673988344882629541204985909650433819205298939877837314145082403528055884752079219150739849992921393509593620449489882380176216648401057401569934043087087362272303101549800941212057354903559653373299153430753882035233354304783275982332995766778499425529570008008029401325668301144188970480975565215953953985078281395545902102245755862663621187438677596628109967066418993851632543137353041712721919291521767262678140115188735994447949166616101182806820741928292882642234238450207472914232596747755261325098225968268926580993051
c2 = 14386997138637978860748278986945098648507142864584111124202580365103793165811666987664851210230009375267398957979494066880296418013345006977654742303441030008490816239306394492168516278328851513359596253775965916326353050138738183351643338294802012193721879700283088378587949921991198231956871429805847767716137817313612304833733918657887480468724409753522369325138502059408241232155633806496752350562284794715321835226991147547651155287812485862794935695241612676255374480132722940682140395725089329445356434489384831036205387293760789976615210310436732813848937666608611803196199865435145094486231635966885932646519
Explanation
To get the values of p and q, we have to solve the given equations. First we have to make the equations exponentially same. To do that multiply equation [1]
by and equation [2] by , which results in the following form,
Now to get the value of q
, we have to eliminate p
from equations [3]
and [4]
. To do that multiply equation [3]
by and equation [4]
by .
Multiply eqution [6]
with -
, which results in the following equation,
Solving equations [5]
and [7]
, we get,
From equation [8]
, we can get q by the following steps:
If a congruence holds modulo a product of two integers, it holds modulo each integer.
The right-hand side of the congruence is a multiple of
q
, so the expression is also a multiple ofq
.N
is a multiple ofq
, meaningq
is a divisor of both the expression andN
.The only divisors of
N
are1
,p
,q
, andN
. Sinceq
divides onlyN
andN
, it's highly likely that isq
, notN
.There's no particular reason for
p
to divide , making it very unlikely that would beN
.Therefore, it's highly probable that equals
q
.
After getting q
, we can get p
by , which we derived from the given, .
Solution
from math import gcd
N = 14905562257842714057932724129575002825405393502650869767115942606408600343380327866258982402447992564988466588305174271674657844352454543958847568190372446723549627752274442789184236490768272313187410077124234699854724907039770193680822495470532218905083459730998003622926152590597710213127952141056029516116785229504645179830037937222022291571738973603920664929150436463632305664687903244972880062028301085749434688159905768052041207513149370212313943117665914802379158613359049957688563885391972151218676545972118494969247440489763431359679770422939441710783575668679693678435669541781490217731619224470152467768073
e1 = 12886657667389660800780796462970504910193928992888518978200029826975978624718627799215564700096007849924866627154987365059524315097631111242449314835868137
e2 = 12110586673991788415780355139635579057920926864887110308343229256046868242179445444897790171351302575188607117081580121488253540215781625598048021161675697
c1 = 14010729418703228234352465883041270611113735889838753433295478495763409056136734155612156934673988344882629541204985909650433819205298939877837314145082403528055884752079219150739849992921393509593620449489882380176216648401057401569934043087087362272303101549800941212057354903559653373299153430753882035233354304783275982332995766778499425529570008008029401325668301144188970480975565215953953985078281395545902102245755862663621187438677596628109967066418993851632543137353041712721919291521767262678140115188735994447949166616101182806820741928292882642234238450207472914232596747755261325098225968268926580993051
c2 = 14386997138637978860748278986945098648507142864584111124202580365103793165811666987664851210230009375267398957979494066880296418013345006977654742303441030008490816239306394492168516278328851513359596253775965916326353050138738183351643338294802012193721879700283088378587949921991198231956871429805847767716137817313612304833733918657887480468724409753522369325138502059408241232155633806496752350562284794715321835226991147547651155287812485862794935695241612676255374480132722940682140395725089329445356434489384831036205387293760789976615210310436732813848937666608611803196199865435145094486231635966885932646519
q = gcd((pow(c1, e2, N) * pow(5, e1 * e2, N)) - (pow(c2, e1, N) * pow(2, e1 * e2, N)), N)
p = N // q
print('crypto{' + str(p) + ',' + str(q) + '}')
Last updated
Was this helpful?